Logical Reduction of Biological Networks to Their Most Determinative Components
نویسندگان
چکیده
Boolean networks have been widely used as models for gene regulatory networks, signal transduction networks, or neural networks, among many others. One of the main difficulties in analyzing the dynamics of a Boolean network and its sensitivity to perturbations or mutations is the fact that it grows exponentially with the number of nodes. Therefore, various approaches for simplifying the computations and reducing the network to a subset of relevant nodes have been proposed in the past few years. We consider a recently introduced method for reducing a Boolean network to its most determinative nodes that yield the highest information gain. The determinative power of a node is obtained by a summation of all mutual information quantities over all nodes having the chosen node as a common input, thus representing a measure of information gain obtained by the knowledge of the node under consideration. The determinative power of nodes has been considered in the literature under the assumption that the inputs are independent in which case one can use the Bahadur orthonormal basis. In this article, we relax that assumption and use a standard orthonormal basis instead. We use techniques of Hilbert space operators and harmonic analysis to generate formulas for the sensitivity to perturbations of nodes, quantified by the notions of influence, average sensitivity, and strength. Since we work on finite-dimensional spaces, our formulas and estimates can be and are formulated in plain matrix algebra terminology. We analyze the determinative power of nodes for a Boolean model of a signal transduction network of a generic fibroblast cell. We also show the similarities and differences induced by the alternative complete orthonormal basis used. Among the similarities, we mention the fact that the knowledge of the states of the most determinative nodes reduces the entropy or uncertainty of the overall network significantly. In a special case, we obtain a stronger result than in previous works, showing that a large information gain from a set of input nodes generates increased sensitivity to perturbations of those inputs.
منابع مشابه
Comparison of MLP NN Approach with PCA and ICA for Extraction of Hidden Regulatory Signals in Biological Networks
The biologists now face with the masses of high dimensional datasets generated from various high-throughput technologies, which are outputs of complex inter-connected biological networks at different levels driven by a number of hidden regulatory signals. So far, many computational and statistical methods such as PCA and ICA have been employed for computing low-dimensional or hidden represe...
متن کاملطراحی یک مدل مبتنی بر شبکههای عصبی برای شناسایی و تجزیه و تحلیل الگوهای غیرطبیعی در نمودارهای کنترل فرآیند
Neural networks because of their abilities are used to patterns recognition. In statistical process control charts, a common cause variation distort expected form of unnatural patterns and so detection of assignable causes efficiently and precisely in a real-time is difficult. Therefore it would be logical to propose models based neural networks for recognition and analysis of patterns in proce...
متن کاملSeismic Risk Assessment of Power Substations
Power networks are among the most important infrastructures that without them, industrial, economic and social procedures will halt. Therefore, they should be planned for the most difficult conditions to provide services with minimum disruption. Power substations are of great importance to a power network, because any disruption in their components can produce extensive problems through the net...
متن کاملRelation Between RNA Sequences, Structures, and Shapes via Variation Networks
Background: RNA plays key role in many aspects of biological processes and its tertiary structure is critical for its biological function. RNA secondary structure represents various significant portions of RNA tertiary structure. Since the biological function of RNA is concluded indirectly from its primary structure, it would be important to analyze the relations between the RNA sequences and t...
متن کاملInvestigating the Effects of Social Networks on Family Relations from the Viewpoints of Teachers in 11th Region of Education Ministry
Today, the number of people using social networks is increasing. Meanwhile, the most important effect of these networks is on the quality of family members' relationships because it is considered as a tool that can be very effective on the relationships of family members with each other. Therefore, the purpose of this study was to investigate the effect of social networks on family relationship...
متن کامل